Crystallization and preliminary crystallographic studies of Mycobacterium tuberculosis DNA gyrase B C-terminal domain, part of the enzyme reaction core.

نویسندگان

  • Guangsen Fu
  • Jinjun Wu
  • Deyu Zhu
  • Yonglin Hu
  • Lijun Bi
  • Xian En Zhang
  • Da Cheng Wang
چکیده

DNA gyrase subunit B C-terminal domain (GyrB-CTD) is a functional module of DNA gyrase which participates in forming the core of DNA gyrase and plays critical roles in G-segment binding and T-segment loading and passage. Here, the purification, crystallization and preliminary X-ray crystallographic studies of GyrB-CTD from Mycobacterium tuberculosis H37Rv are reported. Diffraction data were collected from crystals of native GyrB-CTD and its selenomethionine derivative to resolutions of 2.8 and 3.0 A, respectively. These crystals belonged to space group P2(1)2(1)2(1) with similar unit-cell parameters. The native protein crystals had unit-cell parameters a = 52.831, b = 52.763, c = 192.579 A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv)

The present study was aimed to construct a fusion plasmid harboring the extracellular domain of the influenza A M2-protein (M2e), which was fused to the N-terminus of the truncated HSP70 (HSP70359–610) molecule as a new approach for future vaccine research against influenza A. The amplified fragments, M2e and HSP70359-610 genes, were gel-purified. The products were then single digested with Bam...

متن کامل

Structural Insights into the Quinolone Resistance Mechanism of Mycobacterium tuberculosis DNA Gyrase

Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistan...

متن کامل

Cloning, expression, purification, crystallization and preliminary X-ray studies of the C-terminal domain of Rv3262 (FbiB) from Mycobacterium tuberculosis.

During cofactor F(420) biosynthesis, the enzyme F(420)-γ-glutamyl ligase (FbiB) catalyzes the addition of γ-linked L-glutamate residues to form polyglutamylated F(420) derivatives. In Mycobacterium tuberculosis, Rv3262 (FbiB) consists of two domains: an N-terminal domain from the F(420) ligase superfamily and a C-terminal domain with sequence similarity to nitro-FMN reductase superfamily protei...

متن کامل

Recognition of DNA Supercoil Geometry by Mycobacterium tuberculosis Gyrase

Mycobacterium tuberculosis encodes only a single type II topoisomerase, gyrase. As a result, this enzyme likely carries out the cellular functions normally performed by canonical gyrase and topoisomerase IV, both in front of and behind the replication fork. In addition, it is the sole target for quinolone antibacterials in this species. Because quinolone-induced DNA strand breaks generated on p...

متن کامل

The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA)

As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section F, Structural biology and crystallization communications

دوره 65 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2009